

MODEL DEPLOYMENT FOR EDGE AI

— CVPR 2024 Tutorial —

The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024

Seattle, WA, USA

Model Compression

2 Understanding Key Metrics

3 Model Compression Techniques

4 Case Studies

Summary h

MODEL DEPLOYMENT FOR EDGE AI Introduction

Model deployment is a critical phase in Edge AI, where optimized AI models are strategically placed into operation on edge devices. Effective model deployment enables smarter, localized decision-making, minimizes latency, and leverages the full potential of Edge AI.

Objective 01

Understanding model compression techniques J

Objective 02

Comprehending the deployment strategies **Objective 03**

0

Presenting demos in production and in research

The Art and Science of making an AI model smaller and lighter, without substantially sacrificing its accuracy.

UNDERSTANDING KEY METRICS Model Deployment

GN 5

PRIMARY TECHNIQUES FOR MODEL COMPRESSION IN EDGE AI

NEURAL ARCHITECTURE SEARCH

A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions

NEURAL ARCHITECTURE SEARCH Key Metrics

The *Early Exits* technique in model optimization involves adding intermediate outputs to a deep learning model.

HOW DOES EARLY EXITS TECHNIQUE WORK?

Early exits allow intermediate layers in a deep neural network (DNN) to produce predictions.

Uses a confidence threshold to decide when to exit early.

EXITS

They help reduce the computational costs by exiting the inference once a confident prediction is made.

The *Early Exits* technique in model optimization involves adding intermediate outputs to a deep learning model.

WHAT ARE THE EARLY EXITS TECHNIQUE ADVANTAGES?

Faster inference as not all layers need to be processed.

LOWER ENERGY CONSUMPTION

Less computation means lower power usage.

ADAPTIVE COMPUTATION

Flexibility to balance accuracy and efficiency dynamically.

PREDICTED LABEL: HUMAN CONFIDENCE: 0.920, EXIT: 2 PREDICTED LABEL: HUMAN CONFIDENCE: 0.937, EXIT: 2 **PREDICTED LABEL: HUMAN CONFIDENCE: 0.959, EXIT: 4**

Exit 1

Exit 3

Exit 4

Exit 1

Exit 2

Exit 3

Exit 4

MIXTURE OF DEPTHS Overview

The Mixture of Depths combines predictions from different depths of a DL model to improve accuracy and robustness.

Dynamic Compute Allocation

Selectively processes tokens through different layers based on importance.

Skips unnecessary computations to reduce FLOPs and improve efficiency.

Uses a router to decide which tokens pass through expensive layers.

Bypasses less critical tokens via residual connections.

MIXTURE OF DEPTHS Overview

The Mixture of Depths combines predictions from different depths of a DL model to improve accuracy and robustness.

Significant reduction in computing by routing only essential tokens through costly operations. Maintains performance while lowering the computational load.

Ensures predictable compute expenditure with dynamic token participation.

MIXTURE OF DEPTHS Key Metrics

HARDWARE AWARE DESIGN

Real-Time Single Image and Video Super-Resolution using an Efficient Sub-Pixel CNN

HARDWARE AWARE DESIGN

FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization

HARDWARE AWARE DESIGN Key Metrics

KNOWLEDGE DISTILLATION Overview

A technique where a smaller model (student) is trained to reproduce the behavior of a larger model (teacher) or an ensemble of models, often leading to a compact model with comparable performance.

KNOWLEDGE DISTILLATION Key Metrics

GN 22

The process of eliminating unnecessary parameters or connections in a neural network to streamline it, improving efficiency without significantly compromising performance.

element-wise channel-wise shape-wise filter-wise layer-wise

Pruning and Quantization for Deep Neural Network Acceleration: A Survey

Compressing Large-Scale Transformer-Based Models: A Case Study on BERT

Pruning in Edge AI involves strategically removing *redundant* or *non-critical components* from AI models.

THESE ARE THE TYPES OF PRUNING WE WILL DISCUSS TODAY.

based on their absolute values. Do we remove entire channels or just sporadic connections? ocusing on individua layers or the entire network?

GN 25

The process of reducing the numerical precision of model parameters by mapping it from a large number of

possible values to a reduced set of values.

Operation:	Energy (pJ)	Relative Energy Cost	Area (µm ²)	Relative Area Cost
8b Add	0.03		36	
16b Add	0.05		67	
32b Add	0.1		137	
16b FP Add	0.4	in the second	1360	
32b FP Add	0.9		4184	1
8b Mult	0.2		282	
32b Mult	3.1		3495	
16b FP Mult	1.1		1640	
32b FP Mult	3.7		7700	
32b SRAM Read (8KB)	5		N/A	
32b DRAM Read	640		N/A	
		$1 10 10^2 10^3 10^4$		1 10 10^2 10^3

QUANTIZATION

A Survey of Quantization Methods for Efficient Neural Network Inference

Post Training Quantization

Quantization Aware Training

SUMMARIES OF Model Compression TECHNIQUES

NEURAL ARCHITECTURE SEARCH

Summary

Automation

Automates the design of machine learning models.

Optimization

Searches for the most efficient architecture for a given task.

Efficacy

Useful when performance is crucial and manual tuning isn't yielding desired results.

HARDWARE AWARE DESIGN

Summary

MARAMMANIA

Customization Tailor models to suit specific hardware constraints.

Maximization

Maximizes efficiency and performance for EdgeAI deployments.

Adaptability

Useful when deploying on specific edge devices with unique hardware constraints.

KNOWLEDGE DISTILLATION

Summary

Transfer

Train smaller student models with the knowledge of larger teacher models.

Efficiency

Achieve comparable accuracy with significantly reduced model size.

Practicality

The best when computational resources are limited, but access to pre-trained larger models is available.

Simplification Removes unnecessary neurons or connections.

Reduction

Reduces the number of parameters and computational load.

Streamlining

Ideal for models with a large number of parameters or apparent redundancies.

QUANTIZATION

Summary

Wiefunas o Sill Beinhri Silv Eos Alihas Wiegertes (() Adivesions

Vergnon Berion

Compression Reduces the bit-width of weights and activations.

Acceleration

Enables smaller model size and faster execution with little to no loss in accuracy.

Responsiveness

Useful for real-time deployments needing faster execution times.

HOW TO DEPLOY AN OBJECT DETECTION ON QUALCOMM
OBJECT DETECTION Jabra PanaCast P20, Jabra PanaCast 50, PanaCast 50 VBS

180-degrees of FoV 4K Video

MYRIADX REQUIREMENTS Hardware Constraints

Myriad X devices support only FP16 bit widths and have limited memory and compute budget shared across all processes.

Ch Latency

End-to-End acceptable model inference latency - 24 ms to 30 ms.

Range

Model Working Distance - 18 ft to 20 ft (small/medium conference rooms).

QUALCOMM INFERENCE END-TO-END Workflow

WORKFLOW FOR MODEL DEPLOYMENT Deploying Machine Learning Models on Qualcomm Hardware

MEMORY BANDWIDTH Challenge-1

ML models utilize the same memory pool as other system processes. Some factors influencing Memory Bandwidth per Frame:

Objects are harder to detection as they move away from the camera.

OTHER CHALLENGES Overview

PROBLEM IMPACT Discussion

The *problem impact* includes potential memory overflow leading to frame corruption, frame rate reduction, and crash experience. Additionally, model latency may result in a less smooth experience, and the model's performance may be impacted by high false positives and false negatives.

Memory Bandwidth

Model needs to work along other processes utilizing same memory pool.

672

Latency

The model must work at-least at 27 to 30 FPS to pass Microsoft Teams/ Zoom certification.

Performance The model must have low false positives and low false negatives.

Input size is fixed

Reduce feature spatial dimension as soon as possible. This will help decrease latency and memory bandwidth required.

Model parameter reduction

Reduce the number of parameters and operations by *Memory Bandwidth Reduction* and/or *Latency Reduction*.

Precision

Model mAP/mAR should improve, FP/FN should decrease.

MODEL DESIGNING Understanding Hardware

TransposeConv2d

Half Precision Training Train the model with FP16 precision to reduce quantization errors after deployment

Feature Size Use small feature size convolution layers to reduce copy-retrieve operations cost.

CHOSEN SOLUTIONS IN DETAIL

INPUT FEATURE SPATIAL Size Reduction using S2D

COMBINES NEIGHBORING PIXEL VALUES INTO A HIGHER-DIMENSIONAL CHANNEL REPRESENTATION WHILE MAINTAINING THEIR SPATIAL RELATIONSHIP.

Provides a compact, enriched representation for the subsequent convolutional layer.

Prevents immediate loss of spatial correlations, unlike direct downsampling with a Conv2d operation

SPACE-TO-DEPTH VS. CONV2D Results

Layer Type	Input Channels	Output Channels	MAC Operations	Number of Parameters
Conv2D + BN + ReLU	1	32	46.858 M	352 Bytes
Conv2D + BN + ReLU	32	64	2.105 G	18.56 K
Space-to-Depth	1	32	26.04 M	150 Bytes
Space-to-Depth	32	64	1.08 G	5.89 K

OPTIMIZING DOWN SAMPLE CONVOLUTIONS Model Optimization

Dense Connections, promotes feature reuse across layers, saving on parameters and computations.

- Unique Concatenation, combines features from prior
 layers, enhances feature richness, avoids duplication, and conserves memory bandwidth.
- **Diverse Learning**, dense links foster varied feature learning due to added supervision from loss.

Enhanced Propagation, ensures improved feature spread and minimizes overfitting.

Efficiency in Bandwidth, reduced parameters and redundancy lead to less memory usage, conserving memory bandwidth.

DENSEFEATBLOCK VS. CONV2D Results

Layer Type	Input Channels	Output Channels	MAC Operations	Number of Parameters
Conv2D + BN + ReLU	32	64	2.105 G	18.56 K
Conv2D + BN + ReLU	64	128	8.362 G	73.98 K
DenseFeatBlock	32	64	1.764 G	15.53 K
DenseFeatBlock	64	128	7 G	61.88 K

GHOST CONVOLUTIONS Model Optimization

Feature Augmentation Produces additional 'ghost' feature maps via DepthWiseConv2D.

Performance Boost Offers lower FLOPS than Conv2D.

Example 01 Three similar feature map pair examples are annotated with boxes of the same color.

Example 02 One feature map in the pair can be obtained by transforming the other one through cheap operations (denoted by spanners).

GHOSTCONV2D VS. CONV2D Results

Layer Type	Input Channels	Output Channels	MAC Operations	Number of Parameters
Conv2D + BN + ReLU	32	64	2.105 G	18.560 K
Conv2D + BN + ReLU	64	128	8.362 G	73.984 K
GhostConv2D	32	64	1.157 G	10.144 K
GhostConv2D	64	128	4.390 G	38.720 K

PARTIAL CONVOLUTION Overview

Faster then Conv2D but requires frequent memory access.

PConv2D

Cuts down on redundant computations and memory access simultaneously.

Efficiency

Cuts down on unnecessary computation and memory use compared to DepthWiseConv2D.

Optimized Operations

Uses fewer FLOPs than standard convolution but offers more FLOPS compared to DepthWise.

(1)

Latency

Higher FLOPS and Lower FLOPs mean Lower Latency.

PARTIALCONV2D VS. CONV2D Results

Layer Type	Input Channels	Output Channels	MAC Operations	Number of Parameters
Conv2D + BN + ReLU	32	32	4.21 G	9.28 K
Conv2D + BN + ReLU	64	64	16.725 G	36.992 K
PartialConv2D	32	32	320.79 M	742 Bytes
PartialConv2D	64	64	1.157 G	2.630 K

REPLACING TRANSPOSEDCONV2D Overview

TransposedConv2d

Upsamples feature maps using learnable parameters.

START

TransposedConv2D

Pixel Shuffle

Rearranges elements in the feature map for upscaling without introducing new parameters.

OVERCOME DIFFICULTIES

ON-DEVICE EXECUTION TIME ANALYSIS Results

Layer Type	Width	Height	out_channels	stride	layer_exe_ms
PixelShuffle	32	32	128	2	0,228
PixelShuffle	16	16	128	2	0,127
PixelShuffle	8	8	128	2	0,066
TransposedConv2D	32	32	128	2	2.988
TransposedConv2D	16	16	128	2	0,833
TransposedConv2D	8	8	128	2	0,236

CHOICES IMPACT Latency Results

CHOICES IMPACT Memory Bandwidth Results

MODEL IN ACTION Jabra PanaCast 20

head 0.92

body 0.94

16 [0

IX

MODEL IN ACTION Jabra PanaCast 50 VBS

INTELLIGENT MEETING SPACES Jabra PanaCast 50

HOW TO DEPLOY A GAZE CORRECTION MODEL ON INTEL MYRIAD X

GAZE CORRECTION Case Study 2

This case study aims to deploy a gaze correction model on a resource-constrained device. The Luxonis OAK-1 MAX camera will feed its video stream with the user's eye contact for unified communication platforms.

Solution

Use the Intel OpenVINO Toolkit to optimize and deploy the model into a MyriadX chipset.

Model Optimization Use OpenVINO's Model Optimizer for conversion and optimization.

ONNX Format

Convert the model trained with TensorFlow or PyTorch to ONNX format.

Model Deployment

Deploy the optimized model on an Intel-based edge device, e.g., Luxonis cameras.

MODEL DEPLOYMENT FOR EDGE AI Deploy a Custom Model on Intel MyriadX on a MacBook M1

JABRA EYE CORRECTION Gaze Correction Model Based on Warping Technique

ML Models
 PyTorch Methods
 CV Algorithm
 Input Data

ONNX (*Open Neural Network Exchange*) provides a crossplatform solution to deploy models across different

THESE ARE THE PRIMARY TOOLS TO CONVERT A PYTORCH MODEL INTO AN ONNX FILE:

The *export* package is based on TorchScript backend and has been available since PyTorch 1.2.0.

The dynamo_export package is the newest exporter based on the TorchDynamo technology.

The exported model can be executed with ONNX Runtime for inferences across multiple platforms.

PYTORCH TO ONNX Conversion Steps

Step 01 INSTALL PIP PACKAGES \$ pip install onnx \$ pip install onnxscript

Ş

Step 02 EXPORT THE MODEL TO ONNX FORMAT

model = ColorModel()

tensor = torch.randn(1, 2, 48, 64)

onnx_model = torch.onnx.dynamo_export(model, tensor)

Step 03 SAVE THE ONNX MODEL onnx_model.save("model.onnx")

Step 04 LOAD THE ONNX FILE import onnx

onnx_model = onnx.load("model.onnx")
onnx.checker.check_model(onnx_model)

PYTORCH TO ONNX Visualize the ONNX model graph using Netron app

	.		
•••	> Jabra > 01_development > azure-devops > jabra-eye-correction > models > color_model.onnx		
		NODE PROPERT	165 ^
		type	BatchNormalization ?
	1x4×48×64	module	ai.onnx v15
	Shape	name	/right_model/model/model.0/model/model.2/BatchNormalization
	Gather	ATTRIBUTES	
	1x4x48x64 1x4x48x64	epsilon	0.000009999999747378752 +
	Add	momentum	0.1000000149011612 +
		training_mode	0 +
	Div 0 (1)	INPUTS	
		×	name: /right_model/model.0/model.1/Relu_outpu
		scale	name: right_model.model.0.model.2.weight +
	Slice	В	name: right_model.model.0.model.2.bias +
	starts (1) axes (1)	input_mean	name: right_model.model.0.model.2.running_mean +
	Conv	input_var	name: right_model.model.0.model.2.running_var +
	₩ (8×2×3×3) ↓ ↓	OUTPUTS	
	Rolu Rolu	Y	name: /right_model/model.0/model.2/BatchNorm
	BatchNormalization BatchNormalization scale (0) scale (0) B (0) B (0) Input_mean (0) input_mean (0) Input_mean (0) input_mean (0)		
	Conv W (test-st-2) W (test-st-2) Conv W (test-st-2)		
	BatchNormalization BatchNormalization scale (b) scale (c) scale (c) lingut_mean (c) mps_mean (c) mps_mean (c) scale (c) sca		
	Conv W (2x81x40) Softmax		
	Concet 1x4x48x64 (color_out)		
$\equiv \textcircled{\bigcirc} \bigcirc$			

70

MYRIADX BLOB CONVERSION Conversion Tools

MODEL OPTIMIZER

The Model optimizer of OpenVINO converts the model from its original framework format into the Intermediate Representation (IR) standard format of OpenVINO (.bin and .xml).

COMPILE TOOL

After converting the model to OpenVINO's IR format (.bin/.xml), you must use Compile Tool to compile the model in IR format into a .blob file, which can then be deployed to the device.

MYRIADX BLOB CONVERSION Conversion Steps

GN 72

OPENVINO'S MODEL OPTIMIZER Overview

The initial step is to utilize the Model Optimizer to generate the OpenVINO IR representation (where IR stands for Intermediate Representation).

FP16 Data Type

When converting the model for VPU (OpenVINO MyriadX), the generated IR must be compressed to FP16.

Hodel Layout

It defines the input/output tensor shape and whether it uses a *Planar Layout* (CHW) or an *Interleaved Layout* (HWC).

O00 Mean and Scale

You must normalize the mean and scale parameters before running the optimized model in the MyriadX device.

For standard, OpenVINO uses the BGR color system. However, NN models can be trained on either RGB or BGR color order.

CONVERT ONNX TO OPENVINO ovc models/color_model.onnx

OPENVINO'S COMPILE TOOL Overview

The second step is to use OpenVINO's Compile Tool to compile the model in Intermediate Representation (IR) format into a .blob file.

RVC2 only supports FP16, so using the parameter -ip U8 will add a conversion layer U8->FP16 on all input layers.

The RVC2 has 16 SHAVE cores. Compiling for more SHAVEs can improve the model's performance.

In some cases, such as when not dealing with frames, you can use the parameter -ip FP16 to use FP16 precision directly.

By default, each model will run on 2 threads. The firmware will alert you about the potentially optimal number of shave cores.

OPENVINO'S COMPILE TOOLS There are a few options to compile models to Edge AI

Online Blob Converter App You can access the online Blob Converter app, which converts and compiles the NN model. **Local Compilation** You can utilize the OpenVINO's Toolkit to perform model **Blob Converter Library** conversion and compilation locally. The Blob Converter PyPi package enables the conversion and compilation of models from both the command line and Python script.

BLOB CONVERTER LIBRARY pip install blobconverter

This Python library converts neural network files from various sources, such as TensorFlow, PyTorch, Caffe, or OpenVINO, into MyriadX blob files.

import blobconverter

```
blobconverter.from_onnx(
    model="models/color_model.onnx",
    data_type="FP16",
    shaves=5,
    use_cache=False,
    output_dir="models",
    optimizer_params=[],
    compile_params=[]
```


OPENVINO'S COMPILE TOOLS Online Blob Converter App

••• • • • < >	0 6 % ONt Secure - blobconverter.luxonis.com	· 1 + 1
		🗏 Use API
	Luxonis Blob Converter	
	Convert your PyTorch (ONNX) / TensorFlow / Caffe / OpenVINO ZOO model into a blob format compatible with Luxonis devices.	
	Blob Converter currently support model conversion and compilation for RVC2 (2021.2 - 2022.1) and RVC3 devices.	
	Choose OpenVINO version:	
	2021.2 2021.3 2021.4 2022.1 RVC3	
	All non-RVC3 versions are made for RVC2. See our documentation about <u>RVC2</u> and <u>RVC3</u> to choose the correct version.	
	Choose model source:	
	Caffe TensorFlow OpenVino OpenVino Model Zoo DepthAl Model Zoo	
	Continue	

OPENVINO'S COMPILE TOOLS Online Blob Converter App

• • < > 0	Not Secure — t	Nobconverter.luxonis.com	0 û + C
			Use API
	Luxonis Bl	ob Converter	
Con	vert your PyTorch (ONNX) / TensorFlow / Caffe / OpenVII	NO ZOO model into a blob format compatible with Luxonis devices.	
	Blob Converter currently support model conversion	and compilation for RVC2 (2021.2 - 2022.1) and RVC3 devices.	
Conversion parameters	Conversion steps	Advanced options	
Definition file (.xml)			
Choose File color_model.xml		Compile parameters:	
	MyriadX Compile	-19 U8	>ced >
Weights file (.bin)	Model will be compiled using myriad_compile tool		Advar
Choose File color_model.bin		Shaves: 5	
		1	16
By submitting this form, you accept our Privacy Policy	Back	You can read more about advanced options <u>here</u>	

LOCAL COMPILATION MODEL OpenVINO Toolkit

You can use the following Python script to compile a model for inference on a specific device, as the Compile Tool is now deprecated.

import openvino.runtime as ov

core = ov.Core()

```
model = core.read_model(model="color_model.xml")
compiled_model = core.compile_model(
    model=model, device_name="MYRIAD")
output_stream = compiled_model.export_model()
```

with open("color_model.blob", "wb") as f:
 f.write(output_stream)

DEPLOYING CUSTOM MODELS Luxonis OAK-1 Max

NOW THAT YOU HAVE THE .BLOB FILE, YOU CAN BEGIN DESIGNING THE DEPTHAI PIPELINE. THESE ARE THE PRIMARY COMPONENTS:

Pipeline It is a collection of nodes that defines the processing flow.

XLinkIn This node sends data from the host to the device via XLink.

NeuralNetwork This node runs neural network inference on input data.

XLinkOut This node sends data from the device to the host via XLink.

HTTPS://WWW.LUXONIS.COM

DEPLOYING CUSTOM MODELS What is DepthAI SDK

DEPLOYING CUSTOM MODELS Nodes

Nodes serve as a building block when populating the Pipeline. They offer specific functionality on the DepthAl, along with a set of configurable properties and inputs/outputs.

EdgeDetector node has 2 inputs and 1 output

DEPLOYING CUSTOM MODELS

I must implement the Luxonis OAK-1 Max's pipeline similar to the JECModel architecture

ML Models
PyTorch Methods
CV Algorithm
Input Data

THANKYQU!