
CVPR 2024 Tutorial
The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024

Seattle, WA, USA

Model Deployment for Edge AI



2

1 Model Compression

2 Understanding Key Metrics

3 Model Compression Techniques

4 Case Studies

5 Summary

Tutorial Agenda



3

Model Deployment for Edge AI
Introduction

Model deployment is a critical phase in Edge AI, where 
optimized AI models are strategically placed into 

operation on edge devices. Effective model deployment 
enables smarter, localized decision-making, minimizes 

latency, and leverages the full potential of Edge AI.

Understanding 
model compression 

techniques

Objective 01
Comprehending the 

deployment 
strategies

Objective 02
Presenting demos in 

production and in 
research

Objective 03



4

Model Compression
The What & The Why

The Art and Science of making an AI model smaller and lighter, without substantially sacrificing its accuracy.

Reduced Energy 
Consumption

Smaller Model 
Size

Faster 
Inference

Deployment on 
Constrained Devices

“ ”



5

Understanding Key Metrics
Model Deployment

Consumption

Bandw
idth

LatencyThroughput

Ac
cu

ra
cy

Size Reduction

Gauging the rate at which 
data is transferred to and 
from the device's memory.

Memory Bandwidth

Evaluating the model's energy 
use and battery impact during 
operation.

Power & Energy Consumption

Timing the delay from 
input to decision output 
by the model.

Latency

Measuring the model's 
correctness in predictions 

against real-world data.

Accuracy

Shrinking model 
dimensions to fit edge 

device constraints.

Size Reduction

Assessing the number of 
inferences a model can 

process per unit time.

Throughput

AI



Primary Techniques 
For Model Compression 

In Edge AI



7

Neural Architecture Search
A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions



8

Key Metrics

Consumption

Bandw
idth

LatencyThroughput

Ac
cu

ra
cy

Size Reduction

10% – 50% reduction.
Memory Bandwidth

2x – 5x lower 
consumption.

Power & Energy Consumption

2x – 5x reduction 
compared to non-
optimized models.

Latency

Equal to or often 
better than 

handcrafted models.

Accuracy

Up to 10% – 50%
Size Reduction

1.5x – 5x higher 
compared to non-
optimized models.

Throughput

AI

Neural Architecture Search



9

Early Exits
Overview

Early exits allow 
intermediate layers in a 

deep neural network 
(DNN) to produce 

predictions.

Predictions

Uses a confidence 
threshold to decide 
when to exit early.

Exits

They help reduce the 
computational costs by 

exiting the inference 
once a confident 

prediction is made.

Performance

The Early Exits technique in model optimization involves adding 
intermediate outputs to a deep learning model.

How does Early Exits Technique Work? 



10

Early Exits
Overview

Faster inference as not 
all layers need to be 

processed.

Reduced latency

Less computation 
means lower power 

usage.

Lower energy consumption

Flexibility to balance 
accuracy and efficiency 

dynamically.

Adaptive computation

The Early Exits technique in model optimization involves adding 
intermediate outputs to a deep learning model.

What are the Early Exits Technique Advantages? 



Early Exits
Human Detector



12

Predicted Label: human 
Confidence: 0.920, Exit: 2

Predicted Label: human 
Confidence: 0.937, Exit: 2

Predicted Label: human 
Confidence: 0.959, Exit: 4

Early Exits
Results



13



14

Key Metrics

Consumption

Bandw
idth

LatencyThroughput

Ac
cu

ra
cy

Size Reduction

20% – 40% reduction.
Memory Bandwidth

2x – 4x lower 
consumption.

Power & Energy Consumption

3x – 5x reduction 
compared to non-
optimized models.

Latency

Equal to or often 
better than 

handcrafted models.

Accuracy

Up to 20% – 40%
Size Reduction

2x – 4x higher 
compared to non-
optimized models.

Throughput

AI

Early Exits



15

Overview
Mixture of Depths

Dynamic Compute Allocation
Selectively processes tokens 
through different layers based 
on importance.

Routing Mechanism
Uses a router to decide which 
tokens pass through 
expensive layers.

Skips unnecessary computations 
to reduce FLOPs and improve 
efficiency.

Bypasses less critical tokens via 
residual connections.

The Mixture of Depths combines predictions from different 
depths of a DL model to improve accuracy and robustness. 



16

Overview
Mixture of Depths

Compute Savings
Significant reduction in 
computing by routing only 
essential tokens through 
costly operations.

Static Computation Graph
Ensures predictable compute expenditure with dynamic token 
participation.

Maintains performance while 
lowering the computational load.

The Mixture of Depths combines predictions from different 
depths of a DL model to improve accuracy and robustness. 



17

Key Metrics

Consumption

Bandw
idth

LatencyThroughput

Ac
cu

ra
cy

Size Reduction

25% – 50% reduction.
Memory Bandwidth

2x – 5x lower 
consumption.

Power & Energy Consumption

3x – 6x reduction 
compared to non-
optimized models.

Latency

Equal to or often 
better than 

handcrafted models.

Accuracy

Up to 40%
Size Reduction

2x – 4x higher 
compared to non-
optimized models.

Throughput

AI

Mixture of Depths



18

Hardware Aware Design
Real-Time Single Image and Video Super-Resolution using an Efficient Sub-Pixel CNN



19

Hardware Aware Design
FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization



Hardware Aware Design

20

Key Metrics

Consumption

Bandw
idth

LatencyThroughput

Ac
cu

ra
cy

Size Reduction

20% – 40% reduction, 
depending on the 
student model design.

Memory Bandwidth

2x – 4x lower 
consumption.

Power & Energy Consumption

Latency

Accuracy

Up to 30% – 50% 
w.r.t teacher model.

Size Reduction

Throughput

AIEqual to or often 
better than 

handcrafted models.

2x – 4x higher 
compared to non-
optimized models.

3x – 5x reduction 
compared to non-
optimized models.



21

Knowledge Distillation
Overview

A technique where a smaller model (student) is trained to reproduce the behavior of a larger model (teacher) or 
an ensemble of models, often leading to a compact model with comparable performance.“ ”



22

Key Metrics

Consumption

Bandw
idth

LatencyThroughput

Ac
cu

ra
cy

Size Reduction

50% – 75% reduction, 
depending on the 
student model design.

Memory Bandwidth

2x – 10x lower 
consumption.

Power & Energy Consumption

2x – 10x reduction.
Latency

1% - 5% drop, 
w.r.t teacher model.

Accuracy

Up to 10% – 50% 
w.r.t teacher model.

Size Reduction

2x – 10x higher 
w.r.t teacher model.

Throughput

AI

Knowledge Distillation



23

Overview
Pruning

The process of eliminating unnecessary parameters or connections in a neural network to streamline it, 
improving efficiency without significantly compromising performance.“ ”



24

Pruning
Types of Pruning

Targeting parameters 
based on their absolute 

values.

Magnitude 
Pruning

Do we remove entire 
channels or just 

sporadic connections?

Structured vs. Unstructured 
Pruning

Focusing on individual 
layers or the entire 

network?

Local vs. Global 
Pruning

Pruning in Edge AI involves strategically removing redundant or 
non-critical components from AI models.

These are the Types of Pruning we will discuss today. 



25

Pruning
Key Metrics

Consumption

Bandw
idth

LatencyThroughput

Ac
cu

ra
cy

Size Reduction

10% – 50% reduction.
Memory Bandwidth

10% – 50% lower 
consumption.

Power & Energy Consumption

10% - 40% reduction.
Latency

1% - 10% drop, 
recovered by model 

fine-tuning.

Accuracy

Up to 90x smaller 
models.

Size Reduction

10% – 50% higher.
Throughput

AI



26

Quantization
Overview

The process of reducing the numerical precision of model parameters by mapping it from a large number of 
possible values to a reduced set of values.“ ”



27

Quantization
A Survey of Quantization Methods for Efficient Neural Network Inference



28

Quantization
Key Metrics

Consumption

Bandw
idth

LatencyThroughput

Ac
cu

ra
cy

Size Reduction

50% – 75% reduction, 
depending on bit-
width.

Memory Bandwidth

2x – 3x lower 
consumption.

Power & Energy Consumption

2x – 3x reduction.
Latency

1% - 5% drop, 
depending on bit-width and 

quantization technique.

Accuracy

Up to 50% – 75% 
w.r.t FP32 model.

Size Reduction

2x – 4x higher.
Throughput

AI



Summaries OF 
Model Compression 

Techniques



30

Neural Architecture Search
Summary

Automates the design of 
machine learning models.

Automation
01

02 Searches for the most efficient 
architecture for a given task.

Optimization

03 Useful when performance is 
crucial and manual tuning isn't 
yielding desired results.

Efficacy



31

Hardware Aware Design
Summary

Tailor models to suit specific 
hardware constraints.

Customization
01

02 Maximizes efficiency and performance 
for EdgeAI deployments.

Maximization

03 Useful when deploying on 
specific edge devices with 
unique hardware constraints.

Adaptability



32

Knowledge Distillation
Summary

Train smaller student models with the 
knowledge of larger teacher models.

Transfer
01

02 Achieve comparable accuracy with 
significantly reduced model size.

Efficiency

03 The best when computational 
resources are limited, but access to 
pre-trained larger models is available.

Practicality



33

Pruning
Summary

Removes unnecessary neurons 
or connections.

Simplification
01

02 Reduces the number of parameters 
and computational load.

Reduction

03 Ideal for models with a large 
number of parameters or 
apparent redundancies.

Streamlining



34

Quantization
Summary

Reduces the bit-width of 
weights and activations.

Compression
01

02 Enables smaller model size and 
faster execution with little to no 
loss in accuracy.

Acceleration

03 Useful for real-time 
deployments needing faster 
execution times.

Responsiveness



35

Break (10  minutes)



How to Deploy 
An Object Detection 

On QualcomM



Object Detection

37

Jabra PanaCast P20, Jabra PanaCast 50, PanaCast 50 VBS

180-degrees of FoV 
4K Video



MyriadX Requirements

38

Hardware Constraints

Myriad X devices support only FP16 bit widths and have 
limited memory and compute budget shared across all 
processes.

Latency
End-to-End acceptable model 
inference latency -  24 ms to 
30 ms.

Detected People
Must be able to detect 1 to 
20 people.

Range
Model Working Distance - 18 
ft to 20 ft (small/medium 
conference rooms).

Precision
Low False Positives/False 
Negatives.



39

Qualcomm Inference End-to-End
Workflow



40

Workflow for Model Deployment
Deploying Machine Learning Models on Qualcomm Hardware



Memory Bandwidth

41

Challenge-1

ML models utilize the same memory pool as other system 
processes. Some factors influencing Memory Bandwidth 
per Frame:

Input Load

Model Layer Weights

Model Layer Activations

Model Output



42

Type of Layers, ex. Skip + Concat

More Number of Intermediate 
Activations

Higher Computational 
Complexity

Higher Latency

Model Latency
Challenge-2

Larger the Input Size

AI



43

Model Accuracy
Challenge-3

Objects are harder to detection as they move away from the camera. 

OcclusionsInput 
Resolution

Lighting 
Conditions

Scale 
Variations

“ ”

43

Dataset 
Limitations



44

Other Challenges
Overview

Person Facing 
Sideways

Person’s Face 
Occluded by Hand

Person Facing  
Away from the Camera Person Far Away from 

The Camera with Hand Raised
Person Partially Occluded 
By Another Person in Front



45

Problem Impact
Discussion

The problem impact includes potential memory overflow 
leading to frame corruption, frame rate reduction, and crash 
experience. Additionally, model latency may result in a less 
smooth experience, and the model's performance may be 

impacted by high false positives and false negatives.

Model needs to 
work along other 

processes utilizing 
same memory pool.

Memory Bandwidth
The model must 

work at-least at 27 
to 30 FPS to pass 
Microsoft Teams/

Zoom certification.

Latency
The model must 
have low false 

positives and low 
false negatives.

Performance



46

Goals
Discussion

Goal 01

Goal 02

Goal 03

Model mAP/mAR should improve, FP/FN 

should decrease.

Precision

Reduce the number of parameters and 

operations by Memory Bandwidth Reduction 

and/or Latency Reduction.

Model parameter reduction

Reduce feature spatial dimension as soon as 

possible. This will help decrease latency and 

memory bandwidth required.

Input size is fixedInput

Parameters

Performance



47

Model Designing
Understanding Hardware

Precision

Convolutional

Feature SizeShuffling

Sp
ac

e2
De

pt
h

Architecture

Use efficient Conv layers 
like GhostConv, 
PartialConv, etc.

Convolutional

Train the model with FP16 
precision to reduce 
quantization errors after 
deployment

Half Precision Training

Use small feature size 
convolution layers to reduce 
copy-retrieve operations cost.

Feature Size

Use large kernel 
convolutions with 

large stride at input.

Space2Depth

Making sure all the  layers 
are executed using Neural 

Compute Engine (NCE)

Architecture

Use pixel shuffling 
at the output 

instead of 
TransposeConv2d

Pixel Shuffling



Chosen 
Solutions 

in Detail



49

Provides a compact, enriched representation for 
the subsequent convolutional layer.

Combines neighboring pixel values into a higher-
dimensional channel representation while maintaining 
their spatial relationship.

Prevents immediate loss of spatial correlations, 
unlike direct downsampling with a Conv2d 
operation

Size Reduction using S2D
Input Feature Spatial



50

Space-to-Depth vs. Conv2D
Results

Layer Type Input Channels Output Channels MAC Operations Number of Parameters

Conv2D + BN + ReLU 1 32 46.858 M 352 Bytes

Conv2D + BN + ReLU 32 64 2.105 G 18.56 K

Space-to-Depth 1 32 26.04 M 150 Bytes

Space-to-Depth 32 64 1.08 G 5.89 K



51

Optimizing Down Sample Convolutions
Model Optimization

01 Dense Connections, promotes feature reuse across 
layers, saving on parameters and computations.

02 Unique Concatenation, combines features from prior 
layers, enhances feature richness, avoids duplication, 
and conserves memory bandwidth.

03 Diverse Learning, dense links foster varied feature 
learning due to added supervision from loss.

04 Enhanced Propagation, ensures improved feature 
spread and minimizes overfitting.

05 Efficiency in Bandwidth, reduced parameters and 
redundancy lead to less memory usage, conserving 
memory bandwidth.



52

DenseFeatBlock vs. Conv2D
Results

Layer Type Input Channels Output Channels MAC Operations Number of Parameters

Conv2D + BN + ReLU 32 64 2.105 G 18.56 K

Conv2D + BN + ReLU 64 128 8.362 G 73.98 K

DenseFeatBlock 32 64 1.764 G 15.53 K

DenseFeatBlock 64 128 7 G 61.88 K



53

Ghost Convolutions
Model Optimization

Produces additional 'ghost' feature maps via 
DepthWiseConv2D.

Feature Augmentation

Offers lower FLOPS than Conv2D.
Performance Boost

Three similar feature map pair examples are 
annotated with boxes of the same color.

Example 01

One feature map in the pair can be obtained by 
transforming the other one through cheap 
operations (denoted by spanners).

Example 02



54

GhostConv2D vs. Conv2D
Results

Layer Type Input Channels Output Channels MAC Operations Number of Parameters

Conv2D + BN + ReLU 32 64 2.105 G 18.560 K

Conv2D + BN + ReLU 64 128 8.362 G 73.984 K

GhostConv2D 32 64 1.157 G 10.144 K

GhostConv2D 64 128 4.390 G 38.720 K



55

Partial Convolution
Overview

Faster then Conv2D but 
requires frequent 
memory access.

DWConv2D
Cuts down on 

redundant 
computations and 

memory access 
simultaneously.

PConv2D
Uses fewer FLOPs than 
standard convolution 

but offers more FLOPS 
compared to 
DepthWise.

Optimized Operations
Higher FLOPS and 
Lower FLOPs mean 

Lower Latency.

Latency
Cuts down on 
unnecessary 

computation and 
memory use compared 
to DepthWiseConv2D.

Efficiency



56

PartialConv2D vs. Conv2D
Results

Layer Type Input Channels Output Channels MAC Operations Number of Parameters

Conv2D + BN + ReLU 32 32 4.21 G 9.28 K

Conv2D + BN + ReLU 64 64 16.725 G 36.992 K

PartialConv2D 32 32 320.79 M 742 Bytes

PartialConv2D 64 64 1.157 G 2.630 K



57

Overview
Replacing TransposedConv2D

O V E R C O M E  D I F F I C U L T I E S

S TA R T S U C C E S S

Upsamples feature 
maps using learnable 

parameters.

TransposedConv2d
Rearranges elements in the feature 

map for upscaling without 
introducing new parameters.

Pixel Shuffle



58

On-Device Execution Time Analysis
Results

Layer Type Width Height out_channels stride layer_exe_ms

PixelShuffle 32 32 128 2 0,228

PixelShuffle 16 16 128 2 0,127

PixelShuffle 8 8 128 2 0,066

TransposedConv2D 32 32 128 2 2.988

TransposedConv2D 16 16 128 2 0,833

TransposedConv2D 8 8 128 2 0,236



59

Choices Impact
Latency Results

~20% improvement (due to 
reduced width).

Efficient Bottleneck Block

~30% improvement (no learnable 
parameters, just rearrangement).

PixelShuffle

~40% improvement (reduced 
operations, in GhostConv).

Partial Conv/GhostConv

~15% improvement (fewer 
channels means fewer operations).

Skip/Concat

~20%

~30%

~40%

~15%



60

Choices Impact
Memory Bandwidth Results

~15% reduction (due to fewer 
parameters).

Efficient Bottleneck Block

~25% reduction (no weights 
storage).

PixelShuffle

~35% reduction (fewer 
parameters).

Partial Conv/GhostConv

•~10% reduction (fewer channels 
means fewer weights).

Skip/Concat

~15%

~25%

~35%

~10%



Model in Action
Jabra PanaCast 20



Model in Action
Jabra PanaCast 50 VBS



Intelligent Meeting Spaces
Jabra PanaCast 50



How to Deploy 
A Gaze Correction Model 

On Intel Myriad X



Gaze Correction
Case Study 2

This case study aims to deploy a gaze correction model 
on a resource-constrained device. The Luxonis OAK-1 
MAX camera will feed its video stream with the user’s 
eye contact for unified communication platforms.

Solution
Use the Intel OpenVINO Toolkit 
to optimize and deploy the 
model into a MyriadX chipset.

ONNX Format
Convert the model trained with 
TensorFlow or PyTorch to 
ONNX format.

Model Optimization
Use OpenVINO’s Model 
Optimizer for conversion and 
optimization.

Model Deployment
Deploy the optimized model on 
an Intel-based edge device, e.g., 
Luxonis cameras.



66

Model 
Deployment

Deploy the custom-trained (or pre-
trained) model to the Edge device.

Model 
Inference

Use Inference Engine (IE) to 
evaluate the optimized model.

Blob 
Conversion

Use OpenVINO’s Compiler Tool to 
compile the model into .blob file.

ONNX 
Conversion

You must convert the trained 
model to ONNX format.

Model 
Development

You can design and train a model 
using TensorFlow or PyTorch.

01

02

03

04

05

Model Deployment For Edge AI
Deploy a Custom Model on Intel MyriadX on a MacBook M1



67

Jabra Eye Correction
Gaze Correction Model Based on Warping Technique

Encoder 
Model

Concat
Warping 

Model
Color 
Model

Gaze 
Warping

Color 
Correction64

x4
8x

3
64

x4
8x

16

64
x4

8x
19

64
x4

8x
2

64
x4

8x
3

64x48x2 64x48x2

64
x4

8x
3

Eye Angle 
(X, y)

64x48x2

ML Models 
PyTorch Methods 
CV Algorithm 
Input Data



PyTorch To ONNX

68

Model Conversion

The export package is 
based on TorchScript 

backend and has been 
available since PyTorch 

1.2.0.

The dynamo_export 
package is the newest 
exporter based on the 

TorchDynamo 
technology.

Torch Dynamo

The exported model 
can be executed with 
ONNX Runtime for 
inferences across 

multiple platforms.

ONNX Runtime

ONNX (Open Neural Network Exchange) provides a cross-
platform solution to deploy models across different

These are the primary tools to convert a PyTorch model into an ONNX file: 

Export



69

PyTorch to ONNX
Conversion Steps

$ pip install onnx 
$ pip install onnxscript

Install Pip packages
Step 01

model = ColorModel() 
tensor = torch.randn(1, 2, 48, 64) 
onnx_model  = torch.onnx.dynamo_export(model, tensor)

Export the Model to ONNX Format
Step 02 onnx_model.save("model.onnx")

Save the ONNX model
Step 03

import onnx 
onnx_model = onnx.load("model.onnx") 
onnx.checker.check_model(onnx_model)

Load the ONNX file
Step 04



70

PyTorch to ONNX
Visualize the ONNX model graph using Netron app

https://netron.app


MyriadX Blob Conversion

71

Conversion Tools

After converting the model to OpenVINO’s IR format (.bin/.xml), 
you must use Compile Tool to compile the model in IR format 
into a .blob file, which can then be deployed to the device.

Compile Tool

The Model optimizer of OpenVINO converts the model from its 
original framework format into the Intermediate Representation 
(IR) standard format of OpenVINO (.bin and .xml).

Model Optimizer



72

MyriadX Blob Conversion
Conversion Steps

ONNX Model
Model 

Optimizer 
(.xml/.bin)

Model 
Compiler 

(.blob)

Config file Weights file
Luxonis OAK-1 Max 

Camera

https://docs-old.luxonis.com/en/latest/pages/model_conversion/#converting-model-to-myriadx-blob


OpenVINO’s Model Optimizer

73

Overview

The initial step is to utilize the Model Optimizer to generate 
the OpenVINO IR representation (where IR stands for 
Intermediate Representation).

FP16 Data Type
When converting the model 
for VPU (OpenVINO 
MyriadX), the generated IR 
must be compressed to FP16.

Model Layout
It defines the input/output 
tensor shape and whether it 
uses a Planar Layout (CHW) or 
an Interleaved Layout (HWC).

Mean and Scale
You must normalize the mean 
and scale parameters before 
running the optimized model in 
the MyriadX device.

Color Order
For standard, OpenVINO uses 
the BGR color system. However, 
NN models can be trained on 
either RGB or BGR color order.



74

Convert Onnx TO OpenVINO
ovc models/color_model.onnx

https://docs.openvino.ai/2024/openvino-workflow/model-preparation/convert-model-onnx.html


OpenVINO’s Compile Tool
Overview

The second step is to use OpenVINO’s Compile Tool to 
compile the model in Intermediate Representation (IR) 
format into a .blob file.

Input Layer Precision
RVC2 only supports FP16, so 
using the parameter -ip U8 
will add a conversion layer 
U8->FP16 on all input layers.

MyriadX Shaves
The RVC2 has 16 SHAVE 
cores. Compiling for more 
SHAVEs can improve the 
model's performance.

FP16 Data Type
In some cases, such as when not 
dealing with frames, you can use 
the parameter -ip FP16 to use 
FP16 precision directly.

Default Shaves
By default, each model will run 
on 2 threads. The firmware will 
alert you about the potentially 
optimal number of shave cores.



76

Local Compilation
You can utilize the OpenVINO's 
Toolkit to perform model 
conversion and compilation locally.

Online Blob Converter App
You can access the online Blob 

Converter app, which converts and 
compiles the NN model.

Blob Converter Library
The Blob Converter PyPi package 

enables the conversion and 
compilation of models from both the 

command line and Python script.

OpenVINO’s Compile Tools
There are a few options to compile models to Edge AI



Blob Converter Library

77

pip install blobconverter

This Python library converts neural network files from 
various sources, such as TensorFlow, PyTorch, Caffe, or 

OpenVINO, into MyriadX blob files.

import blobconverter 

blobconverter.from_onnx( 
    model="models/color_model.onnx", 
    data_type="FP16", 
    shaves=5, 
    use_cache=False, 
    output_dir="models", 
    optimizer_params=[], 
    compile_params=[] 
)



78

OpenVINO’s Compile Tools
Online Blob Converter App

http://blobconverter.luxonis.com


79

OpenVINO’s Compile Tools
Online Blob Converter App

http://blobconverter.luxonis.com


Local Compilation Model

80

OpenVINO Toolkit

You can use the following Python script to compile a 
model for inference on a specific device, as the Compile 

Tool is now deprecated.

import openvino.runtime as ov 

core = ov.Core() 

model = core.read_model(model="color_model.xml") 
compiled_model = core.compile_model( 
    model=model, device_name="MYRIAD") 
output_stream = compiled_model.export_model() 

with open("color_model.blob", "wb") as f: 
    f.write(output_stream)



81

Deploying Custom Models
Luxonis OAK-1 Max

https://www.luxonis.com

It is a collection of 
nodes that defines the 
processing flow.

Pipeline
This node runs neural 
network inference on 
input data.

NeuralNetwork

This node sends data 
from the host to the 
device via XLink.

XLinkIn
This node sends data 
from the device to the 
host via XLink.

XLinkOut

Now that you have the .blob file, you can begin designing 

the depthai pipeline. These are the primary components:

https://www.luxonis.com


82

What is DepthAI SDK
Deploying Custom Models

https://docs.luxonis.com/software/


83

Nodes
Deploying Custom Models

Nodes serve as a building block when populating the Pipeline. They offer specific functionality on the 
DepthAI, along with a set of configurable properties and inputs/outputs.

inputImage     ┌──────────────────┐ 
──────────────►│                  │ 
               │                  │ outputImage 
               │   EdgeDetector   ├───────────► 
inputConfig    │                  │ 
──────────────►│                  │ 
               └──────────────────┘ 
  EdgeDetector node has 2 inputs and 1 output



Deploying Custom Models

84

I must implement the Luxonis OAK-1 Max’s pipeline similar to the JECModel architecture

Encoder 
Model

Concat
Warping 

Model
Color 
Model

Gaze 
Warping

Color 
Correction64

x4
8x

3
64

x4
8x

16

64
x4

8x
19

64
x4

8x
2

64
x4

8x
3

64x48x2 64x48x2

64
x4

8x
3

Eye Angle 
(X, y)

64x48x2

ML Models 
PyTorch Methods 
CV Algorithm 
Input Data



85

Questions &  Answers




