

MULTIMODAL AI FOR EDGE AI

----- CVPR 2024 Tutorial -----

The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024

Seattle, WA, USA

Multimodal Perception

2 Gaze Correction

3 Hand Gestures Recognition

4 Sound Localization

Demos n

INTRODUCTION AND CHALLENGES OF GAZE CORRECTION

GAZE CORRECTION Overview

Gaze correction refers to using computer vision or artificial intelligence techniques to adjust the apparent direction of a person's gaze in digital video communication.

Enhanced Engagement

It provides more natural and engaging interaction by simulating real eye contact

Professional Appearance

It ensures that speakers appear to be addressing their audience directly in virtual presentations

Increased Attention

It can help maintain attention and focus during hybrid and virtual meetings

Dimproved Comprehension Speakers may enhance the audience's ability to understand the discussed content

VIRTUAL MEETING EXAMPLE Original Video

100

Redirected Outpu

VIRTUAL MEETING EXAMPLE

MAXINE

VIRTUAL MEETING EXAMPLE Original Video vs. Gaze Correction

CHALLENGES IN EDGE AI Implementing Gaze Correction in Edge AI

Running complex AI models for gaze correction requires efficiently using the limited AI components resources without compromising performance

S Real-Time

It must process video in realtime to ensure the gaze is corrected without noticeable lag

User Diversity

The model must be trained on diverse datasets to work accurately across different ethnicities, genders and ages

It must be compressed and optimized without significant loss of accuracy

Integration

The gaze correction application must integrate seamlessly with existing video conferencing platforms and camera hardware

CHALLENGE OF GAZE CORRECTION Technical Challenges

CHALLENGE OF GAZE CORRECTION Technical Challenges

HOW GAZE CORRECTION WORKS Deep Learning for Gaze Correction

Generative Adversarial Networks

GANs are used in gaze correction to generate realistic eye images that match the desired gaze direction.

WARPING

Warping Neural Networks

Warping techniques adjust the eye region in an eye region to redirect the gaze, creating the impression of eye contact.

SYSTEMATIC REVIEW ON GAZE CORRECTION MODELS Recent Published Models

- *Isikdogan et al. (2020), Eye Contact Correction using Deep Neural Networks.*
- *Hsu et al.* (2019), Look at Me! Correcting Eye Gaze in Live Video Communication.
 - *He et al.* (2019), Photo-Realistic Monocular Gaze Redirection using Generative Adversarial Networks.
 - *Kononenko et al. (2018)*, Photorealistic Monocular Gaze Redirection using Machine Learning.

Kaur and Manduchi (2021), Subject Guided Eye Images Synthesis with Application to Gaze Redirection.

JABRA GAZE CORRECTION MODEL FOR EDGE AI

JABRA EYE CORRECTION Jabra PanaCast 20

Jabra Eye Correction model simulates direct eye contact between participants of online meetings, enhancing the sense of engagement and personal connection during remote interactions. The model can be deployed directly in our Jabra Business Collaboration products.

Speed

The model runs at 30 frames per second with eye images of 64x48 resolution

Eye Shape

The model generates good eye feature shape, especially iris contour and eyelid shape

Color Composition

The model reconstructs the eye colors and skin color in the processed eye region

HOW TO BUILD A GAZE CORRECTION APPLICATION? Edge AI Deployment

IFSP-JABRA DATASET

Eye Contact Dataset with Real Data

JABRA GAZE CORRECTION MODEL ARCHITECTURE

ML Models
PyTorch Methods
CV Algorithm
Input Data

JABRA GAZE CORRECTION MODEL

Video Example (Gaze Correction)

20

JABRA GAZE CORRECTION MODEL Video Example (Gaze Correction + Beautification)

Global gesture recognition market size estimation and projection

WHY HAND GESTURES Is hand gesture recognition still a thing?

Global gesture recognition market share, by application segment, 2023

WHY HAND GESTURES

Hand gestures are everywhere

AGRICULTURE AND INDUSTRY

Equipment Operation

On-Site Inspections

HAND GESTURE PRODUCTS Example in different industries

Leap Motion Controller 2

HoloLens 2

Echo Show

Gesture Control Armband

AIR Neo Selfie Pocket Drone

HONOR Cellphone Camera

BENEFITS OF HAND GESTURES Overview

HG supports immersive experiences of entertainment and control by providing more natural and engaging ways to interact with digital environments, systems and devices.

Enhances User Experience Promotes Accessibility

Provides multimodal interaction methods, making systems more user-friendly and versatile.

Enables Touchless Control

Enables hygienic interaction by eliminating the need for physical contact, ideal for public and shared environments.

Increases Efficiency

Allows for quick and efficient execution of commands through simple gestures, reducing reliance on traditional input devices.

HAND-BASED TECHNOLOGY General view

Hand-based technology uses cameras or other sensors to capture the users' hand gestures and movements.

Algorithms or Machine Learning models then analyze and interpret the hand poses or performances from the captured data.

General View for Hand Gesture Technology

GN 32

Deep Learning Ensembles Artificial Neural Networks (ANN) 3D Convolutional Neural Networks (3D-CNN) **C** Support Vector Machines (SVM) Convolutional Neural Networks (CNN) Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) **GESTURE CLASSISIFCATION**

COMMON AVAILABLE MODELS FRAMEWORKS / LIBRARIES **Keras Google Tensor-Flow PyTorch** scikit-learn MediaPipe Inference models

ENHANCE ACCURACY AND RELIABILITY OF THE RECOGNIZED GESTURES

THECNIQUES / TOOLS

Statistical Methods

Confidence Interval Calculation

Minimizing the mean of the squared error

Outlier Detection

Reinforcement Learning

DATA

PRE Rocessing FEATURE EXTRACTION

GESTURE CLASSISIFCATION Filtering and Smoothing Error Correction Gesture Segmentation Gesture Mapping Event Detection Gesture Adaptation and Learning

INTERFACE FEEDBACK

Recognized gestures

POST

PROCESSING

PERCEPTIVE RESPONSE TO THE USER

MAPPED TO SPECIFIC ACTIONS

Interacting with the UI

Controlling hardware

Sending commands to other applications or devices

Confirm that the gesture has been recognized

Triggering Actions Saving Data **Feedback Generation INTERFACE FEEDBACK**

Interaction / Response

PRE PROCESSING FEATURE Extraction **OESTURE** Classisifcation

HAND GESTURE RECOGNITION Cloud versus Edge AI

liŀ **INFERENCE** HERE Ψ $\overleftarrow{}$ \bigcirc FEATURE POST **INTERFACE GESTURE CLASSISIFCATION** PROCESSING **FEEDBACK** EXTRACTION

CHALLENGES IN HAND GESTURES Technical problems

Improving performance in these areas is essential for making hand gesture recognition systems more practical, reliable, and widely applicable in real-world scenarios.

S Datasets x Data Privacy

Model Size

Ensuring datasets used for training It must be compressed and gesture recognition models are diverse and representativity

optimized without significant loss of accuracy

Real-Time Processing

Low-latency processing to provide immediate feedback and smooth interaction in realtime applications

Gesture Vocabulary

Common shared hand gestures vocabulary for contexts or systems actions

CHALLENGES IN HAND GESTURES Cross-cutting problems

The most critical challenges in hand gesture recognition today include

SHG Education

Is it enough to rely on users' experience and intuitiveness?

Cultural Prism

Hand gesture recognition must account for the cultural prism, as the meaning and interpretation of gestures can vary significantly across different cultures.

Depends on the perfect integration between the user and the system

Shared Vocabulary

A lack of shared vocabulary in hand gesture recognition can lead to inconsistencies and misunderstandings, as different systems and users may interpret gestures differently.

HAND GESTURE EDGE AI DEMO Volume Control

PALM DETECTOR / HAND LANDMARK TRACKING Google MediaPipe (Blob)

SOUND LOCALIZATION Motivation

Sound location models involve identifying the spatial position of sound-emitting objects within an image or a video to localize auditory cues.

Current Experience

A sound location model that incorporates direction of arrival and head/body detection.

Multimodal Interaction Find a multimodal solution or

application with one neural network that inputs both audio and video components.

ML Models

Developing a separate machine learning model tailored explicitly for audio and video.

Edge AI $\begin{bmatrix} 0 \end{bmatrix}$

Optimizing the sound location model to be specifically tailored for efficient and effective use on edge devices

AUDIO PROCESSING Modality

PARTICLES AND WAVE OSCILLATION

AUDIO PROCESSING Sampling

Sampling in audio processing involves capturing and converting continuous audio signals into discrete digital data points at regular intervals.

Better quality with higher sampling rate

AUDIO REPRESENTATION IN DIFFERENT DOMAINS Examples

Waveform Waveform is a graphical representation of the audio signal in the time domain.

-**/**~•

Frequency Spectrum

Frequency Spectrum is obtained using the Fast Fourier Transform.

FFT

Fast Fourier Transform is a representation in the Frequency domain.

AUDIO REPRESENTATION IN DIFFERENT DOMAINS Examples

Waveform Waveform is a graphical representation of the audio signal in the time domain.

-**/**~•

Frequency Spectrum

Frequency Spectrum is obtained using the Fast Fourier Transform.

FFT

Fast Fourier Transform is a representation in the Frequency domain.

TIME-FREQUENCY DOMAIN Windowing to Spectrogram

PERCEPTION OF SOUND Overview

THE NON-LINEAR SCALE OF THE HUMAN EAR

The human ear does not perceive frequencies on a linear scale. Instead, it perceives them on a logarithmic scale. This means that a change in frequency at lower frequencies is more noticeable than at higher frequencies.

CAPTURING THE NON-LINEAR PERCEPTION OF FREQUENCY

The Mel scale is a perceptual scale of pitches listeners judge as equal in distance. It captures this non-linear perception of frequency.

PERCEPTION OF SOUND Overview

A COMPARISON OF AUDIO DISCRIMINATION

Humans can easily distinguish between 100Hz and 200Hz audio, but it will be tough to tell the difference between 2100Hz and 2000Hz audio.

ACHIEVING SMOOTH MAGNITUDE SPECTRUM

The magnitude frequency response is multiplied by a set of triangular band-pass filters called Mel filter banks to attain a smooth magnitude spectrum.

LOG-MEL SPECTROGRAM Spectrogram vs. Log-Mel Spectrogram

LOG-MEL IS DESIGNED TO MIMIC HUMAN PERCEPTION, WHICH IS MORE SENSITIVE TO DIFFERENCES IN LOWER FREQUENCIES THAN HIGHER ONES.

Spectrogram

Spectrogram uses a linear/ logarithmic frequency scale.

Logarithmic Lower Frequency better seen.

Linear Direct frequency.

Log-Mel Spectrogram Uses the Mel scale for the frequency axis.

MEL-FREQUENCY CEPSTRAL COEFFICIENT Log-Mel Spectrogram to MFCC

The speech signal's time power spectrum envelope represents the vocal tract, and MFCC (which is nothing but the coefficients that make up the *Mel-Frequency Cepstrum*) accurately represents this envelope.

LIBROSA PACKAGE A Python package for music and audio analysis

Option 01

Spectrogram

Represents the

magnitude of

Option 02 Log-Mel Spectrogram **Represents frequencies** on the Mel scale. providing a more perceptually relevant frequency axis and using logarithmic magnitude scaling.

Option 03

MFCC

Represents the signal in a compact form, capturing the most important aspects of the power spectrum while reducing dimensionality.

DOA ESTIMATION PLOT

Adavanne et al. (2021), Differentiable Tracking-Based Training of DL Sound Source Localizers

SOUND LOCALIZATION

Owens et al. (2021), How to Listen: Rethinking Visualizing and Localizing Sound

SOUND LOCALIZATION Owens et al. (2021). How to Listen: Rethinking Visualizing and Localizing Sound.

ACTIVE SPEAKER DETECTION

Ruijie et al. (2021), Is Someone Speaking? Exploring Long-Term Temporal Features for Audio-Visual Active Speaker Detection

ACTIVE SPEAKER DETECTION

Jabra PanaCast 20

ACTIVE SPEAKER DETECTION Jabra PanaCast 50

JABRA COLLABORATION BUSINESS Try Our Multimodal Demos

GN 🛛

JABRA COLLABORATION BUSINESS Expy Experience Platform

JABRA COLLABORATION BUSINESS Expy Experience Platform

62

THANKYQU!

